Collision Attacks on the Reduced Dual-Stream Hash Function RIPEMD-128

Florian Mendel¹, Tomislav Nad², Martin Schläffer²

Katholieke Universiteit Leuven, ESAT/COSIC and IBBT, Belgium

Graz University of Technology, IAIK, Austria

FSE 2012

- Motivation
- Description of RIPEMD-128
- Outline of the Attack
- Searching for Differential Characteristics
- 5 Finding a Colliding Message Pair
- Results and Summary

- Motivation
- Description of RIPEMD-128
- Outline of the Attack
- Searching for Differential Characteristics
- 5 Finding a Colliding Message Pair

Motivation

- Cryptanalysis of ARX based designs is still important
- Very difficult without the right tools
- Even more for dual-stream hash functions.
- Do the results on SHA-2 help to improve attacks on other designs?
- RIPEMD-128: shares some similarities with SHA-2

- Motivation
- Description of RIPEMD-128
- Outline of the Attack
- Searching for Differential Characteristics
- 5 Finding a Colliding Message Pair

Description of RIPEMD-128

- ISO/IEC standard [DBP96]
- designed by Dobbertin, Bosselaers and Preneel
- iterated, Merkle-Damgård hash function
- dual stream compression function
- no output transformation
- 128-bit hash output

Step Update Transformation of RIPEMD-128

- one message word updates two state variables
- different message word permutations
- different rotation values and Boolean functions
- no interaction between streams (SHA-2: with interaction)
- 4 rounds of 16 steps

Step Update Transformation of RIPEMD-128

- one message word updates two state variables
- different message word permutations
- different rotation values and Boolean functions
- no interaction between streams (SHA-2: with interaction)
- 4 rounds of 16 steps

- Motivation
- Description of RIPEMD-128
- Outline of the Attack
- Searching for Differential Characteristics
- 5 Finding a Colliding Message Pair

Overview of the Attack

Overview of the Attack

- choose a good starting point
 - few message word differences
 - high probability characteristic
- search for a characteristics
 - very sparse in R2 and R3
 - sparse in one stream in R1
- determine message pair
 - message modification in R1
 - exhaustive search for R2, R3
 - ⇒ iterations between phases

Choosing a Starting Point

- which message words should contain differences?
 - as few words as possible
 - only words used late in R3
 - short local collisions in R2

Choosing a Starting Point

- which message words should contain differences?
 - as few words as possible
 - only words used late in R3
 - short local collisions in R2
- message word 13
 - single local collision (R1-R2)
 - impossible in left stream

Choosing a Starting Point

- which message words should contain differences?
 - as few words as possible
 - only words used late in R3
 - short local collisions in R2
- message word 13
 - single local collision (R1-R2)
 - impossible in left stream
- message word 0 and 6
 - left: two short local collisions
 - right: one long local collision
 - avoid overlapping of LCs
 - collision for 38 steps

- Motivation
- Description of RIPEMD-128
- Outline of the Attack
- Searching for Differential Characteristics
- 5 Finding a Colliding Message Pair

Differences and Conditions

Generalized Conditions [DR06]

• take all 16 possible conditions on a pair of bits into account

(X_i, X_i^*)	(0,0)	(1,0)	(0,1)	(1,1)	(X_i, X_i^*)	(0,0)	(1,0)	(0,1)	(1,1)
?	✓	✓	✓	✓	3	✓	✓	-	-
-	✓	-	-	✓	5	✓	-	\checkmark	-
х	-	✓	\checkmark	-	7	✓	\checkmark	\checkmark	-
0	✓	-	-	-	A	-	\checkmark	-	✓
u	-	✓	-	-	В	✓	✓	-	✓
n	-	-	✓	-	C	-	-	✓	✓
1	-	-	-	✓	D	✓	-	\checkmark	✓
#	-	-	-	-	E	-	✓	✓	✓

2-bit Conditions [MNS11]

- linear relation between closely related bits: $X_i \oplus X_j = 0/1$
- 2-bit conditions on any generalized condition (-,x,?,...)
- used to determine critical bits (those with many relations)

Propagation of Differences and Conditions

- Stored conditions
 - all possible pairs on bits (generalized conditions)
 - all possible pairs on carries

Propagation of Differences and Conditions

- Stored conditions
 - all possible pairs on bits (generalized conditions)
 - all possible pairs on carries
- 2-bit conditions
 - · all inputs and outputs of
 - Boolean functions
 - modular additions
 - even on carries (sign of carry)

Propagation of Differences and Conditions

- Stored conditions
 - all possible pairs on bits (generalized conditions)
 - all possible pairs on carries
- 2-bit conditions
 - · all inputs and outputs of
 - Boolean functions
 - modular additions
 - even on carries (sign of carry)
- Efficiency
 - not all conditions in every iteration/phase
 - use table lookups when possible

Search Strategy

Search Algorithm [DR06, MNS11]

- (1) Start with an unrestricted characteristic ('?' and '-')
- (2) Successively impose new conditions on the characteristic
 - path search: replace '?' by '-' and 'x' by 'n' or 'u'
 - message search: replace '-' by '1' or '0'
- (3) Propagate the conditions in a bitslice manner and check for consistency
 - if a contradiction occurs then backtrack
 - else proceed with step 2
- (4) Repeat steps 2 and 3 until all bits of the characteristic are determined

Search Strategy

The difficulties are in the details...

- Which information to propagate (and when)?
 - path search: generalized conditions
 - message search: generalized conditions and 2-bit conditions
- Which bits (which area) to guess?
 - dedicated to hash function
 - bits with many 2-bit conditions (in message search)
 - lots of trial and error needed to find best strategy
- How to backtrack?
 - if a contradiction occurs on a bit, backtrack until bit can be set
 - keep and check a list of previous critical bits

Search Strategy

The difficulties are in the details...

- Which information to propagate (and when)?
 - path search: generalized conditions
 - message search: generalized conditions and 2-bit conditions
- Which bits (which area) to guess?
 - dedicated to hash function
 - bits with many 2-bit conditions (in message search)
 - lots of trial and error needed to find best strategy
- How to backtrack?
 - if a contradiction occurs on a bit, backtrack until bit can be set
 - keep and check a list of previous critical bits
- ⇒ Dedicated for every hash function (unfortunately)

Searching for a Differential Characteristic

- 1	∇Β.	∇B	∇m_i
-4			
-3			
-2			
-1			
0	77777777777777777777777777777777		77777777777777777777777777777777
1	7777777777777777777777777777777777		
2	7777777777777777777777777777777777		
3		77777777777777777777777777777777777	
4		77777777777777777777777777777777777	
5		777777777777777777777777777777777777	
6		77777777777777777777777777777777777	77777777777777777777777777777777777
7		77777777777777777777777777777777777	
8		77777777777777777777777777777777777	
9		7777777777777777777777777777777777	
10		777777777777777777777777777777777777	
11		77777777777777777777777777777777777	
12		777777777777777777777777777777777777	
13		77777777777777777777777777777777777	
14		777777777777777777777777777777777777	
15		777777777777777777777777777777777777	
16		7777777777777777777777777777777777	
17			
18			
19			
20			
21	77777777777777777777777777777777777		
22			
23			
24			
25			
26			
27			
28			
29			
30			
31			
32			
33			
34			
35			
36			
37			

- Start characteristic
 - ? in words with difference
 - in words without differences
 - x in LSB of word 0

Searching for a Differential Characteristic

- Start characteristic
 - ? in words with difference
 - in words without differences
 - x in LSB of word 0
- Separate search (phases)
 - high probability in R2
 - left stream in R1

Searching for a Differential Characteristic

- Start characteristic
 - ? in words with difference
 - in words without differences
 - x in LSB of word 0
- Separate search (phases)
 - high probability in R2
 - left stream in R1
 - \bigcirc find first block M_0
 - right stream in R1

- Motivation
- Description of RIPEMD-128
- Outline of the Attack
- Searching for Differential Characteristics
- 5 Finding a Colliding Message Pair

- Message modification
 - many dedicated techniques published
 - mostly hand-tuned (for MD5, RIPEMD, SHA-1, ...)

- Message modification
 - many dedicated techniques published
 - mostly hand-tuned (for MD5, RIPEMD, SHA-1, ...)
- Apply to RIPEMD-128?
 - difficult and time consuming
 - 1 message word updates 2 state words
 - different message permutations and rotations values

- Message modification
 - many dedicated techniques published
 - mostly hand-tuned (for MD5, RIPEMD, SHA-1, ...)
- Apply to RIPEMD-128?
 - difficult and time consuming
 - 1 message word updates 2 state words
 - different message permutations and rotations values
- Automatic message search
 - continue guessing '-' bits to '0' or '1'
 - guess on words (state, message) in order they appear

- Message modification
 - many dedicated techniques published
 - mostly hand-tuned (for MD5, RIPEMD, SHA-1, ...)
- Apply to RIPEMD-128?
 - difficult and time consuming
 - 1 message word updates 2 state words
 - different message permutations and rotations values
- Automatic message search
 - continue guessing '-' bits to '0' or '1'
 - guess on words (state, message) in order they appear
- Amortize costs
 - automatic message modification until word 13
 - brute-force with message words 14,15
 - complexity 2[?]

- Motivation
- Description of RIPEMD-128
- Outline of the Attack
- Searching for Differential Characteristics
- 5 Finding a Colliding Message Pair

Results

previous results:

component	attack	steps	complexity	generic	reference
hash	preimage	33	2 ^{124.5}	2 ¹²⁸	[OSS10]
hash	preimage	interm. 35	2 ¹²¹	2 ¹²⁸	[OSS10]
hash	preimage	interm. 36	2 ^{126.5}	2 ¹²⁸	[WSK+11]

our results:

component	nponent attack		complexity	generic
hash	collision	38	example, 214	2 ⁶⁴
hash	near-collision	44	example, 2 ³²	2 ^{47.8}
hash	hash non-randomness		2 ⁷⁰	2 ⁷⁶
compression	collision	48	example, 240	2 ⁶⁴

Summary

- Strategy to analyze dual stream hash functions
- Automatic path search and automatic message modification
- Time consuming to find the right settings
- Once settings are found, collision can be found in minutes
- Still lots of work to be done for other (ARX based) hash functions
- Remember: it took 5 years to get from SHA-1 to SHA-2

References

Christophe De Cannière and Christian Rechberger.
Finding SHA-1 Characteristics: General Results and Applications.
In Xuejia Lai and Kefei Chen, editors, *ASIACRYPT*, volume 4284 of *LNCS*, pages 1–20. Springer, 2006.

Florian Mendel, Tomislav Nad, and Martin Schläffer. Finding SHA-2 Characteristics: Searching through a Minefield of Contradictions. In Dong Hoon Lee and Xiaoyun Wang, editors, *ASIACRYPT*, LNCS. Springer, 2011. To appear.

Chiaki Ohtahara, Yu Sasaki, and Takeshi Shimoyama.

Preimage Attacks on Step-Reduced RIPEMD-128 and RIPEMD-160. In Xuejia Lai, Moti Yung, and Dongdai Lin, editors, *Inscrypt*, volume 6584 of *LNCS*, pages 169–186. Springer, 2010.

Springer, 2010.
Lei Wang, Yu Sasaki, Wataru Komatsubara, Kazuo Ohta, and Kazuo Sakiyama.

(Second) Preimage Attacks on Step-Reduced RIPEMD/RIPEMD-128 with a New Local-Collision Approach.

In Aggelos Kiayias, editor, CT-RSA, volume 6558 of LNCS, pages 197-212. Springer, 2011.

